Seeing Quuppa's indoor location technology at MWC 2015

I first met Fabio and Kimmo from Quuppa in 2012, before Quuppa existed, when they had spent years researching indoor location positioning technologies at Nokia Research Center. Less than a year after that they formed Quuppa, independent of Nokia, to bring their technology to market. At the time I called Quuppa "the newest and oldest in indoor location positioning."

Fast forward two and a half years. Their technology has reached market, it can now track both smartphones and BLE devices, and it's accurate to within 20-50cm. Before reading more about their technology, take a look at a video of their demo in action:

Grizzly Analytics has analyzed indoor location technologies by over 150 companies, and virtually all of the radio-based technologies operate by measuring the distance between the device being tracked and other radio devices, and using these distance measurements for either multilateration or fingerprinting. For example, the well known BLE beacons measure a device's proximity to a BLE beacon by measuring the signal strength of the signals between the beacons and the device being tracked, and using that signal strength to estimate distance. This is also how most Wi-Fi based systems work, using signal strengths as estimates for distance measurement. Some systems use more sophisticated approaches to measure distance more accurately than can be done using signal strength (such as most UWB-based systems and such as some chip-based approaches), but they're still measuring distances.

But Quuppa's system doesn't measure distance, it measures angles. Their unique locator beacons are able to measure the exact angles at which the signal from the BLE device reached the locator, and use those angles to locate the device accurately. One locator by itself can do a reasonable job of positioning, and two or more can achieve the accuracy they promise.

Until recently, Quuppa's technology could only track custom BLE tags and devices, because their technology requires slight changes to the BLE signals transmitted. But recently, the latest iPhone and Android devices enabled applications to access the Host Control Interface of their BLE chips. As long as an iPhone or smartphone running Android 5.0 or higher is running the Quuppa app, that app can transmit BLE signals in a way that can be tracked by the Quuppa locators.

As the video shows, their system can also track a wide variety of other BLE devices. These BLE devices also need a small software change to transmit signals in a manner that Quuppa locators can track. But any BLE devices that supports software changes of this sort can be Quuppa-enabled.

There's a lot more to say about Quuppa's technology, and more details reported in Grizzly Analytics reports. Bottom line, Quuppa's technology delivers accuracy around 20cm, with real-time response, and can track the latest smartphones and a wide variety of BLE devices.

The catch, of course, is that Quuppa's locators aren't as cheap as simple BLE beacons or existing Wi-Fi access points, so using their system isn't for the faint of heart. Quuppa says that the total cost of ownership over time will be comparable to other systems, but I think their system needs to be thought of as a high-end system for people who want great accuracy and response time, and are willing to pay for it.

Bottom line, Quuppa's innovative technology looks great.

Intel demos indoor location technology in new Wi-Fi chips at MWC 2015

Intel made several announcements at MWC 2015, including a new chipset for wireless connectivity (Wi-Fi) in mobile devices. This new chipset, the 8270, include in-chip support for indoor location positioning. Below we explain their technology and show a video of it in action. With this announcement, Intel joins Broadcom, Qualcomm and other chip makers in moving broad indoor location positioning into mobile device hardware.

The transition of indoor location positioning into chips is a trend identified in the newest Grizzly Analytics report on Indoor Location Positioning Technologies, released the week before MWC 2015. By moving indoor location positioning from software into hardware, chips such as Intel's enable location positioning to run continuously and universally, without using device CPU, and with less power consumption.

Intel's technology delivers 1-3 meter accuracy, using a technique called multilateration, generating a new location estimate every second. While 1-3 meter accuracy is less accurate than some other technologies that deliver sub-meter accuracy, most systems with sub-meter accuracy require dedicated infrastructure or preparation on a site-by-site basis. Chip-based approaches like Intel's can work universally.

While many applications need sub-meter accuracy, universal and continuous technology can deliver indoor location positioning to a wide range of applications, including social networking, picture geotagging, friend-finding and location-sharing, location-based reminders, emergency call geolocation, and more.

Intel's chip uses standard protocols to access the locations of 802.11mc-compliant Wi-Fi access points in area, and uses 802.11mc's Fine Time Measurement to measure the distances between the device and each access point. Multilateration then gives the device's location, the place that is the specified distances from the various access points.

The video below shows their technology in action, moving around the Intel booth at MWC. It's important to remember that this technology demonstration is based only on Wi-Fi based positioning, and does not incorporate motion sensing or other complementary technologies. Presumably a production-ready system would incorporate sensor fusion motion sensing to deliver an even smoother and more accurate experience. Given that, this demo is even more impressive.

For more details on indoor location technologies from over 150 companies, see the latest Grizzly Analytics report on Indoor Location Positioning Technologies. For more on chip-based indoor location positioning, see a video of Broadcom's technology here and details of Qualcomm's chips here.

Here's the video of Intel's technology demo:

We're looking forward to having chip-based indoor location positioning of this sort in our next smartphones!

HP acquires Aruba, focus on indoor location tech

Wow. What does it mean when a giant company like HP acquires networking giant Aruba, and the 3rd paragraph of the Forbes article on the subject discusses indoor location technology:

With Aruba Networks contributing roughly $800 million to $1 billion in wireless revenue, the acquisition would only a small increase to the new HP Enterprise company’s revenue base. However, it would bolster HPs overall networking market share and provide a newer platform to support the best wave of mobility services. Aruba made several important acquisitions over the past two years that has positioned the company to support the future of WLAN growth. It acquired Meridian in 2013.  Meridian uses Wi-Fi triangulation to determine location indoors where GPS signals can’t penetrate  but also offers tools to build apps for businesses that want location-awareness as part of their mobile offering... This market is different from simply delivering connectivity. It delivers indoor location services and supports contextual identity based on the person, the device, the location and the type of traffic.
Indoor location technology is clearly on the radar screen of giants, as much as Aruba's $1B in revenue and their huge market share.

You can read more about Meridian's indoor location technology here, and about Aruba's acquisition of Meridian here. Aruba has added new beacon technology to the Meridian base since those articles were written. Interestingly, HP themselves revealed some R&D recently on network-based indoor location technology. Details of the latest technology from Aruba, Meridian and HP is profiled in the recently updated report on indoor location technology.

Looks like indoor location technology is gaining in significance every day!

Newly updated report on Indoor Location Positioning Technology

Indoor Location Positioning Technology:
Research, Solutions and Trends
The indoor location area continues to explode. Mobile applications are reaching market that deliver the accuracy and reliability that users want. Chips are being made for next-generation smartphones and mobile devices that promise to bring universal indoor location positioning to the mass market. Proximity systems are changing how retail establishments understand and interact with their customers. New chips are poised to bring indoor location positioning to new Internet of Things and Smart Home devices and appliances. And new technologies are changing the capabilities, accuracy, and reliability of indoor location systems.

This newly updated report is the fifth in a series of reports on indoor location technologies. In past years, the biggest changes have been technological, in terms of approaches taken and how they were implemented. In this year's report, the biggest changes have been much more practical, in terms of achieving the accuracy that the market requires, integrating into back-end systems for retail and other industries, implementing in chips that bring the technology to mobile devices or next-generation appliances, and reducing the amount of work needed to deploy technology at particular sites.

This report details research and development from over 150 companies in the indoor location area.

You can learn more about this newly updated report, with a link to buy it, here:

When will Smart Homes get Smarter?

Also published on LinkedIn:

It’s a scant few weeks since a wide variety of visions of #BigIdeas2015 - big ideas for 2015 - were making the rounds, including my own vision of universal indoor location. One area that I didn’t see in any of the #BigIdeas2015 articles is Smart Homes, despite their getting a lot of attention at the Consumer Electronics Show (CES) and other venues. With so many companies working on Smart Homes, why isn’t it a big idea for this year?

I suggest that there needs to be more to Smart Homes than connected appliances. The original concept of Smart Homes involved homes that would adjust themselves automatically as people walked around.

The concept of smart homes was discussed almost 20 years ago, before the smartphone era, when Bill Gates made his famous home that customized itself to where people were in the house. Digital picture frames displayed different paintings depending on who was viewing them, and other controllers adjusted room temperature, music and lighting to fit the preferences of people in the room.

Since then, of course, we’ve gone through the mobile revolution. Computing in our pockets, and computing the reacts to our locations, is no longer innovative. Today’s visions of smart homes are tied to mobile. This makes sense - if we take out our smartphones to communicate, search for information, purchase things, read, watch TV, and much more, why shouldn’t we also take out our smartphones to check if our laundry is finished, turn up the heat, start the coffee maker, and other real-world actions? And if our smartphones notify of us messages, news, nearby events, and a whole lot more personalized things that matter to us, why shouldn’t they notify us when our laundry is finished, when the wine is chilled, when there’s a fire in our house, when there’s a leak in the basement, or anything else we need to know?

Most of the major electronics vendors have recently released updated visions of a smart home that connect smart home to our smartphones. Google acquired Nest, and is expanding their product line from connected thermostats into connected fire alarms and more. Samsung has released their vision of a smart home based on smart appliances that communicate with the user and with each other. Apple has patented technology that tracks users as they move around a house and controls lighting, security systems, garage-door openers, music, thermostats and kitchen appliances, all based on the locations and preferences of people in the house. Microsoft is researching a vision that combines appliance connectivity, sensors and automation based on peoples location. These are only three of the many smart home visions released by major technology vendors.

But if we compare the products and platforms that are coming to market to the early visions of Smart Homes, we see a glaring omission: The appliances and systems are no longer acting automatically and intelligently as people walk around the house. The location-based automation has been replaced by mobile interactivity and preferences.

The technology is in place to show a message on my television screen when my laundry is done, but not to show the message on the particular TV that the laundry-doer happens to be watching. The technology is in place to blink the room lights when I get an e-mail, but not to know which room I’m in so that the right room’s lights are blinked for me. The technology is in place to adjust the thermostat based on my mobile, but not to do so automatically based on who is in each room at that moment.

Most of today’s indoor location tracking technologies, including Bluetooth beacons and Wi-Fi based location tracking on smartphones, is accurate to within five to eight meters. With mobile devices computing hard, this can be reduced to three meters, but very few systems have achieved better. In many applications this is sufficient, such as in a shopping mall where the goal is to know whether a customer is nearer to the Starbucks or the McDonalds. But in a smart home, this will not be accurate enough to deliver the experience that people envision.

If you want a digital picture frame to show an image based on the profiles of the people looking at it, then the technology needs to distinguish people standing near the picture from people standing elsewhere in the room. If you want the lighting and temperature of a room to be customized for those in the room, the technology needs to distinguish who’s in the room and who’s three meters away in the room next door.

More importantly, if you want your coffee machine to know who’s standing next to it, you need to be able to distinguish the person standing by the coffee machine from the person standing by the sink a few meters away. If you want your TV or picture frame to display notifications for the person looking at it, you need to be able to distinguish who’s looking at the picture frame from who’s standing a few meters away.

Bottom line, in a smart home, location accuracy matters.

Another concern with today’s location technologies is speed of update. Many people deploying beacon systems in stores and malls are finding that the technology only reacts to a person’s proximity after a delay of up to twenty seconds. Will a house feel smart if it only adjusts itself twenty seconds after people walk from room to room?

Ultra-wideband (UWB) is a new wireless technology that delivers much more accurate location tracking than is possible with Bluetooth or Wi-Fi. UWB can track location to within five or ten centimeters, much more accurate than the three to eight meter accuracy of Wi-Fi or Bluetooth. And UWB reacts almost instantly.

Ireland-based DecaWave has recently released a single chip implementation of UWB that delivers five to ten centimeter accuracy instantly. As this video and this video both show, DecaWave’s UWB chip can track the location of a person walking around, precisely and quickly. There are other companies developing UWB technology as well, some focusing on mobile devices and some bringing their own industrial products to market, but DecaWave is focusing on getting their chip into Smart Home and Internet of Things products.

There are also a small number of other indoor location systems achieving sub-meter accuracy, taking a variety of technology approaches. But most of these are designed around mobile usage or dedicated location-tracking devices, and are less amenable to chip-based implementation in home appliances and low-power devices.

Whatever your own vision of a smart home includes, knowing where people are in the house needs to be accurate and up to date. With cutting-edge location technology, giving the ability to react automatically to people as they walk around, appliances, lights and thermostats, and other elements of a smart home can truly be smart.

Location Poised to go Universal in 2015

This article was written as part of a series of articles on LinkedIn, on Big Ideas for 2015. You're invited to share and comment either on LinkedIn or here.
We've gotten so used to GPS on our smartphones - to being able to find any location and how to get there, to having real-time traffic reports and directions, to having pictures geotagged, and more - that we take it for granted. The location transformation feels complete. But GPS does not work indoors, and tends to drain smartphone batteries.
I think the biggest change in 2015 #BigIdeas2015 is that the location transformation will be universal. Location will work everywhere. Most importantly, once it works everywhere, it can work for us, instead of our having to work for it.
This is the key thing about location. When it only works outside, and when it takes a lot of battery and CPU, it's not really always available. It's available when we ask for it, when we run an app or invoke a phone feature that uses it. But it's not yet always there.
Imagine, though, if your phone knew where you were every second of the day, without killing your CPU or battery. Then you could be reminded as you approach a particular store in the mall that you want to buy something there, or can be told as you walk through a museum that a good friend of yours is one room over. Your phone can switch to vibrate when you enter a meeting room or theater, tag your Facebook posts with the name of the coffee shop your sitting in and not the one down the hall, remember where you parked in the underground parking lot, remind you to pick up some pages as you walk by the printer, remind you to call your wife as you leave the office, and much more. 
In short, until now location was about maps. In 2015 it will be about apps.
And after 2015 makes location universal on our phones, 2016 will make location universal in our other things as well. Not only will our phones know where we are, so will our door locks and vacuum cleaners, so will our TVs and entertainment systems, so will our lights and air conditioners, and so will hundreds of other things around our homes, offices and public areas. And our phones will know where our keychains, wallets, and other losable things are. Yes, it's a bit big brother-ish. Or a lot. So maybe it won't happen in public spaces. But in our homes, having our air conditioners and lights know where we are, and having our phones know where our keychains and wallets are, is just over the horizon.
There are hundreds of companies developing the technologies that will make location universal. And there are many different technologies that need to come together to make it happen. They're on the way.
A new technology called SLAM is working to enable location to work anywhere, without preparing a site or installing infrastructure. A radio technology called UWB is moving precise location into things all around us. Several new technologies are giving indoor location systems higher accuracy than ever before. And chip companies are adding indoor location tracking to chips in our phones, reducing CPU load and battery drain. And others are working on innovative ways to make indoor location universal.
At the dawn of 2015, we're standing on the cusp of the indoor location transformation, where location goes universal. Is there any mobile app or service, any day-to-day activities that we do on our phones or computers, or any routine activity that we do around our homes, offices, shopping centers or stores, that will not be effected?

PLACE Conference London and Qualcomm's LED-Based Location Technology

It was great attending and presenting at the PLACE London conference last week on November 17. Many technology vendors in the indoor location space, mostly start-ups but larger companies as well, were in attendance, and many large retail companies were there as well. It was the perfect audience to discuss indoor location technology and its impact on retail.

My panel on sensor technologies included representatives from CSR (recently acquired by Qualcomm), Meridian (a subsidiary of Aruba networks) and Pole Star, all companies bringing indoor location technology to market. Other companies presenting at the conference included IndoorAtlas, Qualcomm, Aisle411, LocalSocial, RetailNext, ShopperTrak and Indoorz. Big thanks go to the team from Opus Research for a great job in organizing the conference.

Of course, these dozen companies are only a few of the more than 100 companies in the indoor location area. But it was a great cross-sample of the market.

Several companies were talking about their SLAM-related technology, which enables indoor location technology to work in a new site without extensive customization. Grizzly Analytics has identified SLAM technology as one of the big new technologies that's poised to revolutionize indoor location systems.

One of the surprises, for me, was seeing a demo of a great technology from Qualcomm Technologies (QTI), which does indoor location positioning based on special LED lights. In their system, the LED lights use modulation to send signals that identify each light bulb and its location. Phones that sense the light, using their cameras, can combine (multilaterate) the signals from multiple nearby lights to determine where they are.

We've written before about indoor location systems based on modulated light. A start-up called ByteLight is bringing related technology to market, and a start-up called i2Cat is doing similar things using a phone's ambient light sensor. And others are working on lighting with built in wireless technology, that can also do location positioning. But Qualcomm has a great looking product, with fast and precise positioning, succeeding particularly well at combining the signals from multiple lights to get a very precise location fix. And Qualcomm has the corporate muscle to bring it to market.

Qualcomm reports that their system can track a phone's location to within 10cm in 3D. This puts Qualcomm's technology in an elite group of systems that delivers sub-meter indoor location accuracy, as well as being one of only a few technologies that is accurate in the 3rd dimension (height) as well.

Of course, the infrastructure cost of installing custom lighting is higher than that of BLE beacons. And using the phone's camera to track location will use more battery than many other approaches. But Qualcomm says they're solving the battery problem by intelligently turning their tracking system off and on. They are currently bringing this technology to market in partnership with Accuity Brands lighting, who already delivers lighting to many large retailers. For sites wanting high accuracy that works on a wide variety of smartphones, Accuity's product based on Qualcomm's technology is a very strong contender.

Of course, Qualcomm's technology was only one of a dozen discussed at the PLACE Conference, and each technology has its benefits and tradeoffs. If you're interested in staying on top of indoor location, you should definitely attend a future PLACE Conference. And see the Grizzly Analytics reports on sub-meter accuracy indoor location and on self-learning SLAM technologies to learn about more cutting edge technologies.

Indoor Location's Upcoming SLAM Dunk

The beauty of GPS is that it works everywhere. With a GPS-enabled phone, applications ranging from navigation to picture geotagging, from nearby restaurant search to social network check-ins, can all work everywhere. That is, everywhere outside. Once we go inside, our phones simply remember where we were last observed.

There are over 170 companies developing technologies for indoor location positioning, enabling phones to track their locations inside malls, stores, offices, hospitals, airports and more. Not a week goes by without announcements being released of new deployments of indoor location technology. But virtually all the indoor location systems on the market have to be deployed and customized one site at a time. And deploying and customizing these systems takes a lot of time and effort.

A new technology brings the promise of changing all that, of enabling indoor location systems to work everywhere, or enabling them to be deployed in new much much more easily. SLAM stands for "simultaneous localization and mapping," basically a self-learning approach whereby a system learns about a site automatically while walking around it, and does its best to estimate locations from the start. SLAM has been around in the aeronautical and robot communities for years, and is now being implemented for mobile.

According to a new report from Grizzly Analytics, there are at least eleven companies working on bringing SLAM to market, ranging from the biggest mobile and technology vendors to the smallest start-up companies. The best known of these companies is Apple, who has been known to be working on SLAM for a while, based on their acquisition of start-up WiFiSLAM, but there are many more as well. Interestingly, Cambridge Silicon Radio (CSR) is developing strong SLAM technology, both in software and for integration into their chips. CSR was recently acquired by Qualcomm, makers of the IZAT chips that use radio signals for indoor location positioning. Adding CSR's SLAM to Qualcomm's radio-based positioning could mean that 2016's smartphones could do indoor location positioning anywhere, with millions of phones SLAMming their way through new sites.

To understand how SLAM works, consider the two most common indoor location technologies already on the market. The first is called fingerprinting. In fingerprinting, a phone or laptop is used to record the Wi-Fi and Bluetooth signals at hundreds of places throughout a site. The collection of signals at any place is called the "fingerprint" for that place, in that the exact collection of signals should be slightly different at every place. Generally speaking, signals should be stronger the closer the phone is to the source of the signal (the Wi-Fi access point or the Bluetooth beacon), but signals also vary based on what objects are interfering with the signal, walls that signals can bounce off of, and many more factors. Recording fingerprints in a database enables a system, in principle, to identify a location based on the set of signals observed.

There are, of course, a lot of complexities and challenges in implementing a fingerprinting system. But even the best and most sophisticated fingerprinting system requires that fingerprints be gathered every few meters around the site, which can take days for a large sized site.

Consider now another common technology for indoor location position, called sensor fusion. Sensor fusion basically uses sensors that are built into phones, such as accelerometers, gyroscopes, compasses and barometers, to sense the phone's movement and to track the changes in its location by precisely measuring its movement. In other words, if the phone starts out knowing that its at point A, and then measures that it moved one meter south, it should be easy to calculate the new location.

Motion sensing of this sort, however, is notoriously inaccurate. First, the sensors built into today's smartphones are not top-of-the-line professional sensors, they're much smaller and designed for simpler tasks. Second, small amounts of error tend to build up very quickly. If the measured direction of movement is off by just one degree from the actual direction, the location estimate would be very inaccurate after just ten minutes of walking around.

Enter mobile SLAM. The most common approach to mobile SLAM is to combine sensor fusion with fingerprinting. This type of Mobile SLAM system uses sensor fusion to track its location at well as possible when moving around a new site. It also records radio signal fingerprints as it goes. By combining the data from ten or more walks through the site, it can automatically put together a map of the site and a set of fingerprints for locations throughout the site. These fingerprints can then be used for indoor location positioning.

Clearly, there is a lot more to it than this simple description. If sensor fusion is very inaccurate, how can a SLAM system know where the phone is when it's gathering fingerprint data? There are a lot of technology details that different systems used to make this SLAM process work effectively. Some systems assume that the phones will occasionally walk near windows or open areas of a site and receive sporadic GPS signals that will clarify the phone's location. Some systems detect when the phone is at the same place twice, by recognizing the fingerprints, and then review all the movement data collected between the two times at the same location to clarify the path based on the ending point. Some systems detect when two different phones running SLAM are near each other, to clarify the location estimates of both. These and many other innovative approaches are being used to make SLAM work.

Other systems are taking a very different approach to SLAM, using device cameras to implement what I call Visual SLAM. In visual SLAM, real-time images from the phone's camera are analyzed to detect the phone's movement much more accurately than can be done using the phone's other sensors. Also, in addition to collecting radio signal fingerprints, visual SLAM systems collect images around the site, which can also be compared to determine where the phones are, and can be used later for more accurate location positioning. Visual SLAM, however, is often more power-hungry, and cannot be used for a long time without running down a phone's battery.

Bottom line, mobile SLAM systems present a vision of the future, in which phones can do indoor location positioning anywhere. For sites that have not yet been learned, the phones would use SLAM to learn them. For sites that have been learned already, simple fingerprint matching can be used for location positioning. Suppose, for example, that mobile SLAM was running on all iPhones. With the huge number of iPhones otu there, how long would it take before all popular indoor sites had been fingerprinted and could support indoor location positioning? The same would be true if any popular smartphone brand or application was SLAM-enabled.

Some mobile SLAM systems have a more modest goal: enabling sites to deploy indoor location systems with a fraction of the setup time and effort. Instead of laboriously carrying out the manual fingerprinting process, which can take days for some big sites, the site owners simply need to walk around the site for a while carrying SLAM-enabled phones. The SLAM system would take care of all the fingerprinting, much more easily than using today's manual process.

Whether it comes to market in a universal manner or by making site-specific systems easier to deploy, SLAM has the power to revolutionize the indoor location market. Who will get the SLAM dunk first?

New report: Mobile SLAM Technology - Self-Learning Indoor Location Positioning

Mobile SLAM Technology:
Self-Learning Indoor Location Positioning
November 4, 2014
The indoor location positioning technology area is growing tremendously. Not a week goes by that we don’t hear of new products or solutions, new start-up companies or new acquisitions in the area. But the systems reaching market do not deliver indoor location positioning universally, without preparation for each site, and the preparation required for each site often takes a lot of time.

Technology in development, about to reach market, can solve both of these challenges. This new technology area is Mobile SLAM, or Simultaneous Localization and Mapping, a self-learning indoor location positioning technology. Mobile SLAM offers the promise of systems that can learn to do indoor location positioning anywhere, with no preparation for the site. It also offers to reduce considerably the preparation required for per-site indoor location systems. This report analyzes and explains Mobile SLAM Technology, the solutions under development, the innovations in research, how they differentiate from each other, and the implications of the technology.

You can learn more about Mobile SLAM Technology and Self-Learning Indoor Location Positioning, with report details and a link to buy it, here:
­­­­­­­­­­­­­­­­­­­­­­­Or contact Grizzly Analytics:

Grizzly Analytics LLC
Phone: +1-908-827-1580

The PLACE London 2014 Conference

Grizzly Analytics Chief Analyst Bruce Krulwich will be presenting and moderating a session at the 2014 PLACE London conference. The session is tentatively titled Sensor Technologies for 2015 and Beyond. The conference will be on November 17, 2014, in London.

Planning on attending? E-mail me at info at grizzlyanalytics dot com to schedule a time to say hi and talk. See you there!

Glopos: From Universal Location Positioning to High Accuracy Positioning

A common question people ask about indoor location positioning goes something like this: "Why do you need Wi-Fi, or BLE, or other technologies? Why can't it be done based on cellular signals?"

The common wisdom, of course, is that cellular signals have so broad a range, so big a coverage area, that they don't differentiate different locations sufficiently. Many mobile companies have implemented indoor positioning based on cellular signals, using multilateration algorithms on cellular signal strengths and antenna locations, and have ended up with 60 to 100 meter inaccuracies on average, often worse.

Glopos, based in Helsinki, didn't take "no" for an answer. Instead of relying on cellular signal strength values, Glopos's technology uses a wider variety of cellular signal parameters, models of cell area and shape, and data from other nearby cells, to build self-learning probabilistic models for estimating positions. Their latest tests have achieved 5-6 meter accuracy based on 3G signals alone. In that same test, the average accuracy of the best 80% of the location estimates was 2.4 meters. (See video below.) This accuracy isn't as good as some other companies have achieved, but it's based solely on cellular signals, while most other companies use Wi-Fi or Bluetooth signals.

The aspect of Glopos's approach that Grizzly Analytics likes the best is that it uses cellular signal parameters that are already being received and processed by every cellphone in the world, as the phones check for incoming calls and messages. So there's literally no additional radio signal processing used to achieve always-on, always-available, 24x7 location positioning, and virtually no additional battery or CPU usage. In principle their technology can run on non-smartphones as well. This universality can open up the door to a lot of new applications running in the background.

The aspect of Glopos's approach that Glopos engineers like best, on the other hand, is that the same algorithms can be used to position based on Wi-Fi or other radio data as well as cellular signals. They have tested their technology on Wi-Fi signals in a mall, and achieved 2-3 meter accuracy, without requiring map data for the site or the extensive fingerprinting process that other Wi-Fi based systems require.

But they didn't stop there. A month ago, when Grizzly Analytics released a report on indoor location positioning systems that achieve sub-meter accuracy, the folks at Glopos felt challenged to show that their technology can also achieve sub-meter accuracy. Their video shows their lab test, using Wi-Fi signals from four Wi-Fi access points around a meter-by-meter grid in their lab. In these conditions, their system achieved 9.4cm accuracy!  (See video below)

To be clear, these sub-meter results were in carefully-constructed lab conditions. Their accuracy in real-world conditions is as described above. But even so, this experiment shows the ability of their algorithms to work on a variety of radio signals to deliver a range of results, based on the signals and the application.

Grizzly Analytics believes that universal works-everywhere and always-on location positioning, such as that delivered by Glopos's technology, will completely revolutionize not only indoor location positioning but location applications in general.

Imagine if your mobile, tablet, or wearable device apps could use your location, indoors or outdoors, every minute of the day, with a few-meter accuracy. Your pedestrian navigation would work right away, even in a big city with bad GPS reception, without waiting for GPS connections. Your check-ins or location-sharing could tell your friends which coffee shop you're in, not just that you're in the mall. The Geotagging in your pictures would be accurate even when you take a picture quickly with GPS turned off. You could see nearby friends who were really nearby, not those who were nearby last time their GPS was turned on. Once location is available all the time, indoors and out, location based applications will work a lot better, all the time, and would drain your battery less.

So when will this universal location positioning be available? Glopos is not bringing their technology to market one mall or hospital at a time, rather they're working to leapfrog into the mass market. There are other companies with technology in the pipeline for universal positioning, some based on a technology called SLAM, but none really in the market, and none that have the low battery and CPU usage that Glopos has.

Hopefully the time is coming soon when our phones can know where they are all the time. Every time you wait for your phone to get GPS lock, or see hours-old locations when you start your applications, think forward to a time when location is universal. Stay tuned!

Here are the videos - first Glopos's test in a mall using only 3G signals:

and then their lab test of highly-accurate positioning:

New niche-area report: Sub-Meter Indoor Location Positioning Technology

New Report: Sub-Meter Indoor Location Positioning
August 18, 2014
The indoor location positioning technology area is growing tremendously. Not a week goes by that we don’t hear of new products or solutions, new start-up companies or new acquisitions in the area. But many of the systems reaching market don’t deliver the accuracy that users want.

Most recently, systems have reached the market that truly offer the levels of accuracy that users want. This new and focused report analyzes and explains the technologies and solutions that deliver location accuracy better than one meter.

Details of this report, and a link to purchase it, are available here:

Since 2011, Grizzly Analytics has analyzed and reported on Indoor Location Positioning technologies, both in research labs and in products and solutions. Our most recent comprehensive report was 417 pages, covering over 130 companies, and our next update will grow by over 25 companies. Our reports are unique in their in-depth coverage of the technologies involved, not just the markets and projections.

We are now launching a new series of reports, focusing on specific niche areas within indoor location. This report, on sub-meter accuracy indoor location technologies, is the first of this new series. Future reports are expected to include SLAM technology, software-only positioning, E911, chip-based positioning, and more.

If you want to learn more about highly accurate sub-meter indoor location positioning technology, see more about our report here:

­­­­­­­­­­­­­­­­­­­­­­­Or contact Grizzly Analytics:

griz-logo-2.JPGGrizzly Analytics LLC
Phone: +1-908-827-1580

Ultra-Wideband Poised to Enter Smartphones

Recent years have seen a constant increase in the speed at which software innovations reach market. One day’s new concept can be the next day’s innovative mobile application, the following day’s ten competing mobile applications, and the day after that’s built-in phone feature.

In hardware, however, innovation tends to go slower. Addition of new hardware chips or components to smartphones, for example, are a constant worry for smartphone manufacturers, who need to be 100% certain that the new innovation won’t in some way hurt the other functions and components of the phone.

Does adding a new chip affect in any way the electrical signals between the other chips? Does a new wireless component affect the radio waves of the core phone or wireless components? Do signals to or from a new antenna hurt the performance of other antennas in the device?

Early cellphones and smartphones often had concerns of this sort. Some early smartphones did not include vibrate-mode because the shaking interacted with other components. Some early Wi-Fi antennas interacted with cellular antenna signals. Witness the trouble Apple had with a small antenna design change on the iPhone 4.

One new wireless technology that is reaching market is ultra-wideband (UWB) radio. UWB radio is used to communicate between devices, similar to Bluetooth, but with a higher data rate. UWB has also been designed specifically to transmit in a way that enables much more precise distance measurements and location positioning.

This last aspect of UWB, its ability to measure distances and locations more precisely and more reliably than other common wireless protocols, has led several start-up companies to bring innovative UWB technology to market. UWB has launched in an OEM module from Time Domain, in a chip from DecaWave, and in technology from BlinkSight, Zebra Technologies and others. The single-chip implementation from DecaWave is particularly amenable to integration into electronic devices. But until recently UWB has not been integrated inside smartphones.
A French start-up company called BeSpoon has now demonstrated that UWB technology can be successfully integrated into a smartphone. The SpoonPhone is currently only a prototype, but is being sold to hardware manufacturers and software developers for R&D and evaluation purposes.

The SpoonPhone is able to measure the distance between the phone and a UWB tag very precisely. As this video shows, the distance ranging is both accurate and fast. And most significantly, it’s a phone that works while having a UWB chip embedded. BeSpoon was unwilling to reveal the proprietaryengineering involved in embedding the chip, so we cannot analyze or comment on the methods used, but the bottom line is that the SpoonPhone demonstrates that UWB chips can be integrated inside smartphones without causing problems.

BeSpoon has not yet implemented full location positioning using their technology – their efforts until now have been spent on producing the SpoonPhone. Other companies, however, have developed location positioning based on UWB, such as this demonstration by SK Telecom based on single-chip UWB technology. 

What would you do with a UWB-equipped smartphone? Finding keys and wallets with attached tags is the clearest example, but there are many more. Do you want to be notified if you walk out of range of your jacket or purse while out for the evening? Do you want to carry a small tag in your pocket so that you can find your phone or avoid leaving your phone behind? How about changing your phone to vibrate mode when entering your boss’s office, or turning on your air conditioner when entering your living room? Or how about knowing exactly where you were as you move around a big site? 

Beyond distance measurements and location positioning, UWB can also be used for wireless communications. Would you want a remote control to tell your phone to snap a picture of you? Or a light switch that turns on the lights when you walk into the room? Or the ability to play music on the CD player that's in the same room?

All of these can be done with a wide variety of indoor location technology, but benefit from the increased precision that UWB can deliver.

Now that UWB has been demonstrated to work inside a smartphone, it’s up to phone manufacturers to decide if and when to release a phone that incorporates it. As soon as that happens, the door is open to a whole new range of exciting very precise location based applications.

Here is the video mentioned above of the SpoonPhone in action: