Skip to main content

Intel demos indoor location technology in new Wi-Fi chips at MWC 2015

Intel made several announcements at MWC 2015, including a new chipset for wireless connectivity (Wi-Fi) in mobile devices. This new chipset, the 8270, include in-chip support for indoor location positioning. Below we explain their technology and show a video of it in action. With this announcement, Intel joins Broadcom, Qualcomm and other chip makers in moving broad indoor location positioning into mobile device hardware.

The transition of indoor location positioning into chips is a trend identified in the newest Grizzly Analytics report on Indoor Location Positioning Technologies, released the week before MWC 2015. By moving indoor location positioning from software into hardware, chips such as Intel's enable location positioning to run continuously and universally, without using device CPU, and with less power consumption.

Intel's technology delivers 1-3 meter accuracy, using a technique called multilateration, generating a new location estimate every second. While 1-3 meter accuracy is less accurate than some other technologies that deliver sub-meter accuracy, most systems with sub-meter accuracy require dedicated infrastructure or preparation on a site-by-site basis. Chip-based approaches like Intel's can work universally.

While many applications need sub-meter accuracy, universal and continuous technology can deliver indoor location positioning to a wide range of applications, including social networking, picture geotagging, friend-finding and location-sharing, location-based reminders, emergency call geolocation, and more.

Intel's chip uses standard protocols to access the locations of 802.11mc-compliant Wi-Fi access points in area, and uses 802.11mc's Fine Time Measurement to measure the distances between the device and each access point. Multilateration then gives the device's location, the place that is the specified distances from the various access points.

The video below shows their technology in action, moving around the Intel booth at MWC. It's important to remember that this technology demonstration is based only on Wi-Fi based positioning, and does not incorporate motion sensing or other complementary technologies. Presumably a production-ready system would incorporate sensor fusion motion sensing to deliver an even smoother and more accurate experience. Given that, this demo is even more impressive.

For more details on indoor location technologies from over 150 companies, see the latest Grizzly Analytics report on Indoor Location Positioning Technologies. For more on chip-based indoor location positioning, see a video of Broadcom's technology here and details of Qualcomm's chips here.

Here's the video of Intel's technology demo:


We're looking forward to having chip-based indoor location positioning of this sort in our next smartphones!

Popular posts from this blog

Robot Camera Foreshadows an Era of Location-Aware Electronics

A French company called Move 'N See produces a line of camera robots. Their devices act as a smart tripod, holding a video camera and automatically moving and zooming the camera as people of interest move around a site. The idea is simple but amazingly innovative. Photo selfies are easy to take, but video selfies are next to impossible. How can I video myself playing football or doing gymnastics, without setting the camera so far back as to be useless? Do spectators want to spend an entire sporting event carefully videoing their friend or relative moving around the field? Enter Move 'N See's "personal robot cameramen." Their devices aim, pan and zoom a video camera as one or more people move around an area. The people of interest wear armbands whose locations are tracked, enabling the camera controller to know where to aim the camera. The camera controller also includes enough smarts to adjust the camera smoothly and to capture multiple people evenly. T

Waze and Google Maps: A Quick Comparison

I've been a big Waze fan for years, relying on it to make my daily commute as quick as possible.  I try to never leave my hometown without checking Waze first to avoid getting stuck in traffic. For those of you who don't know about Waze, they basically crowd-source traffic information, learning where traffic is slow by measuring how fast their users are moving.  This traffic information is then used to route people in ways that will truly be fastest.  (Apple has reportedly licensed Waze data for their upcoming maps app.) Waze is used most heavily abroad, and is only recently building a following in the States.  (It was also just reviewed on the Forbes site .)  So on a recent trip to the States, I decided to compare Waze to the latest USA-based version of Google Maps for Android. In a nutshell, I reached three conclusions.  (1) Google's use of text-to-speech in their turn-by-turn directions is very nice.   (2) Google's got Waze beat in terms of explaining what