Skip to main content

DecaWave - High accuracy indoor location with innovative wireless technology

Virtually all R&D in indoor location positioning falls into a few categories. Many systems determine location based on Wi-Fi signals, either using fingerprinting or using triangulation. Many are using sensor fusion (also called inertial navigation), tracking location movements using device sensors. And an increasing number are using Bluetooth Low Energy beacons, where devices track their locations based on signals from dedicated beacons that are deployed around sites, again using either fingerprinting or triangulation. With over 50 start-up companies in our comprehensive report on indoor location technology, and more starting-up every week, virtually all are using one or more of these approaches.

Enter DecaWave, a fabless semiconductor company developing indoor location positioning based on 802.15.4a-standard UWB (ultra-wide band) wireless technology. DecaWave's solution is hardware-based, so it's not something you can download to your phone today. Their chip is going to be launched in the market very soon.  With 10-15cm accuracy, it will bring a new level of location positioning to industrial applications, and is poised to reach mobile devices soon.

Most significantly from a technology perspective, DecaWave's solution implements a wireless technology that's designed from the bottom up, at the wireless wavelength and encoding level, to support location positioning.

802.15.4a is a wireless standard for peer-to-peer personal-area networks (PANs), running over ultra-wideband (UWB), which are wireless networks with a range of between 40 meters (in dense environments) and 300 meters (line-of-sight). 802.15.4a was designed specifically to include distance ranging, determining the precise distance that a radio signal has crossed, as a means of handling interference and reflections. DecaWave is about to be the first company to bring a chip to market that implements location ranging on top of 802.15.4a.

UWB radio, as implemented in 802.15.4a, has several inherent advantages over narrowband radio (including bluetooth and Wi-Fi) in its use for calculating location by time-difference of arrival (TDOA) or time-of-arrival (TOA) measurements. First, the transmission bursts of wideband radio are shorter, so their starts and stops can be measured more precisely. But more importantly, in real-world settings, where signals have interference, reflections, refractions, and often don't have line-of-sight, UWB signals will be more readable in the presence of distortions. This graph shows one example, when a reflected signal (shown in red) is received shortly after a primary signal (blue) is received.


This means that UWB signals are more likely to be received reliably when there are real-world distortions in signal reception. This is one of several ways in which 802.15.4a is designed for positioning. DecaWave's solution is not only highly accurate, but it reportedly delivers that accuracy 99.7% of the time, instead of the 80-90% reliability of many other systems.

It's interesting to note that even Cisco, one of the biggest proponents of Wi-Fi, has acknowledged that 802.15.4a is better than Wi-Fi for location positioning. In this patent application, a Cisco Principal Engineer wrote that "the existing waveforms... for... 802.11 communication protocols do not allow for highly accurate or easily calculated TOA or TDOA location computations... There are other types of waveforms that are better suited... Chirp Spread Spectrum (CSS) waveforms are known to be advantageous for TOA or TDOA... such as is defined as part of the IEEE 802.15.4a communications protocol."

In industrial settings, DecaWave's technology is typically deployed in receivers and tags. Receivers are radio beacons, at fixed locations, similar to Wi-Fi hotspots or cellphone antennas, that receive signals from tags and calculate the tags' locations. The tags are small devices that are attached to things that will be tracked. In hospitals, the tags might be attached to patient wristbands or to portable critical-care medical equipment. In office settings, tags might be attached to employee keycards, to office equipment like projectors, or to mail carts.

Once a DecaWave receiver is deployed, it can measure the precise distance between itself and each of thousands of tags that are in its vicinity.
Each of these distance measurements is accurate to 5-7 a few centimeters. When three or more receivers are deployed in the same area, they can combine their distance measurements to determine each tag's exact location to an accuracy of 10-15cm.

Of course, we've reported beacon-based indoor location positioning before, including a very high-accuracy system based on Bluetooth Low Energy (BLE) from Quuppa. Other companies with custom BLE technology include SK Telecom and WiseSec (more soon on the company that developed the technology in SK Telecom's system), and companies that have added BLE beacons to their existing Wi-Fi or sensor fusion solutions include PoleStar, SenionLab, Insiteo and others. Most of these BLE-based systems have the advantage of running on today's smartphones and tablets, although Quuppa's highest-accuracy system is also waiting for chipset changes.

But industrial deployments are only the beginning. DecaWave is reportedly in talks with network and device makers about including their chips in Wi-Fi access points, smartphones, tablets and more. Just imagine your phone knowing not only that you're in the supermarket, and not only that you're in the snack section, but that you're standing in front of the Ruffles and not the Lays. If indoor location positioning with 10cm accuracy were available in a wide variety of indoor locations, what kinds of novel location-based applications would come next?

Popular posts from this blog

Finding indoor location tech, and fans, at MWC 2017

Over 100,000 people are now planning to attend the 2017 Mobile World Congress in Barcelona, in February. Many will flock to the newest devices, many to the keynote speeches from market leaders, and many to the latest tech from a huge variety of exhibitors. But how does anyone find all the tech they want to see? Anyone who has been to MWC in the past will tell you that there is no way to be sure you're seeing all that you want to see. Anyone interested in indoor location technology now has a solution. The Grizzly Analytics Guide to Indoor Location Technology at MWC2017 will list all the companies at MWC that are demonstrating, presenting or talking about indoor location tech. (Obviously we may miss one, but since we've reported on indoor location tech from over 200 companies , we expect to be fairly comprehensive.) The guide will be organized by technology type and also by MWC hall number, so you can plan your time accordingly. If you are exhibiting i...

The year indoor location will truly take off

For years I've been writing sentences like "this will be the year that indoor location will explode into the market." I, and many others, have been expecting indoor location technology to enable the huge range of location-enabled apps, which currently work only outside where GPS signals are available, to work inside. But until now the promise of indoor location has remained a promise. But if we look at the reasons for this, we'll see that it is about to change. 2017 and 2018 are poised to be the years that the challenges keeping indoor location from going mainstream will be solved. First is accuracy. Most indoor location technologies until a year or so ago had accuracy in the range of 4 to 8 meters. This sounds good in principle, and in fact is better than GPS in many cases. But GPS systems are able to use road details to hide their inaccuracies, so that the blue dot seems to follow your driving car almost perfectly. But indoors, this sort of inaccuracy means y...

Indoor Location, GeoFencing and Retail (Updated w/ video)

We've written a lot about indoor location technology , which is bringing location services indoors where GPS doesn't work. And we've written more recently about GeoFencing , a new location technology that enables smartphones to display content or take other actions when entering a specified area. And a few weeks ago we wrote about a company that was bringing the two together . Now Aisle411 has entered the ring, adding GeoFencing to their indoor solution . And they're bringing GeoFencing to life in the retail store industry . Aisle411's solution lets you navigate your way around a store to find specific products on the shelves. You can even enter your whole shopping list, or the items you need for a recipe, and the app will guide you around the store to buy everything you need quickly.   And here's where the GeoFencing comes in:  As you near certain products, you'll get offers for related products on your smartphone screen. They might be as s...